How can I help at home?

- When children give an answer, ask "How did you know?". "How did you work that out?" or "Can you explain what you did?"
- Deliberately make mistakes. Pupils need to understand mistakes are normal and everyone makes them. Ask children to explain what you did wrong.
- Encourage children make up their own games and decide how to score points.
- Ask children to divide things into fractions - fractions of a whole such as pizza, fractions of amounts, such as sweets etc. Encourage mathematical thinking by deliberately making the fraction unequal and asking if it shows halves or quarters
- Talk about time. Ask time questions about how long until it's time for school, how long does the film last, how long was the football game etc. Look at time using digital and analogue clocks.
- Allow pupils to measure ingredients for baking using scales or measuring jugs. Talk about the scale on items for measuring, especially the ones that aren't numbered eg
"If that mark shows 100 and that one shows 200, what does this mark in between represent?"
- Practise times tables in fun ways such as online games - Times Table Rockstars is another good online game for practsing tables facts. Don't forget to also practice the inverse eg how many 9s in 45?
- Talk about properties of shapes on the faces of 3D objects, eg circles on cylinders. Point out 3D shapes in real life, eg spheres (balls), cylinders (tin cans, vases, Amazon Echo), triangular prism (Toblerone box), cubes and cuboids (dice, boxes) cones or pyramids. Talk about how many faces, vertices and edges they have.
- Talk about months of the year and count days until special events, noting how many days on the month

A Guide to Maths Mastery in Year 5

Saltaire Primary School
Information for parents

Table of Contents

What is Teaching for Mastery? 1
National Curriculum in Year 5 2
Number - Number and Place Value 2
Number - Addition and Subtraction 2
National Curriculum in Year 5 3
Number - Four operations 3
Number - Fractions 3
Number - Measurement 3
National Curriculum in Year 5 4
Geometry - properties of shape 4
Geometry - position and direction 4
Statistics 4
How do we teach for Mastery in Year 5? 5
Fluency 5
Reasoning 8
Problem Solving 9
Helping at home 10

Spotting Patterns and sequences

Pupils need to be taught to spot patterns in maths. This often does not come naturally and generally needs to be specifically taught

- Spotting repeated addition or subtraction patterns eg if 10×8 is 80 then 9×8 will be 8 less, therefore 72
- Linking calculations to their inverse operations eg knowing that if $8 \times 9=72$ then 9×8 will also be 72
- Spotting patterns in multiplication tables such as knowing the link between the eight multiplication table and the four multiplication table.

Problem Solving

Problem solving in maths allows pupils to use their maths skills in lots of contexts and in situations that are new to them. It allows them to seek solutions, spot patterns and think about the best way to do things rather than blindly following maths procedures.

In Year 3, problem solving might include:

- Choosing different ways to find answers
- Solving 'puzzles'
- Problems that involve trial and error
- Working systematically to find all possible solutions
- Discussing 'what if?' problems and making generalisations
- Working backwards from known facts
- Finding the most efficient ways to work out answers from a range of known strategies

Fluency, reasoning and problem solving are not taught in isolation from each other. Lessons are carefully planned to interweave all three aspects in a cohesive teaching sequence to allow pupils to fully understand the concept being taught and to be able to make connections.

Pupils also need to be able to link multiplication facts to other concepts, such as linking multiples of 50 and 100 to measuring length, weight, capacity or money.

By becoming fluent in maths facts, it allows our brain to concentrate on higher level skills, allowing maths to be done more efficiently and accurately.

Reasoning

Reasoning in maths helps pupils to be able to explain their thinking, therefore making it easier for them to understand what is happening in the maths they are doing and to make connections to new concepts. It helps them to think about how to solve a problem, explain how they solved it and to think about what they could do differently.

In Year 3, some examples of reasoning are:

- true and false statements eg if I add a multiple of ten to a three digit number, it will change the number in the ones column
- Spotting and explaining errors eg

263
$+\quad 28$

- Always, Sometimes, Never statements eg
"Multiples of 4 are always multiples of 8 "
"Multiples of 8 are always multiples of 4 "
- Explaining understanding eg
"How would you check your answer is correct in another way? How would that help?"
- Explaining how concepts connect: "What is different? What is the same? What has changed? What do you notice? Which representation matches the question?"

What is Teaching for Mastery?

Our Definition

Our Ethos

We believe that everyone can do maths and there's no such thing as a maths person. Maths is a subject that everyone can and should be able to perform confidently and competently.

Teaching for Mastery

We choose to teach by breaking down maths objectives into the smallest steps, so that every pupil is secure in every new concept before moving on. We focus upon teaching to gain fluency with maths facts, reasoning about maths and problem solving.

National Curriculum in Year 5

This is what most pupils in Year 5 are expected to be able to do by the end of their school year.

Number - number and place value

- Read, write, order and compare numbers to at least 1000000 and determine the value of each digit.
- Count forwards or backwards in steps of powers of 10 for any given number up to 1000000.
- Read, write, order and compare numbers with up to three decimal placesNumber - multiplication and division, addition and subtraction
- Recall multiplication and division facts for multiplication tables up to 12×12.
- Multiply two-digit and three-digit numbers by a one-digit
- Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.
- Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why number using formal written layout.

Number - Four operations

- Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction).
- Add and subtract numbers mentally with increasingly large numbers.
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.
- Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers.
- Multiply and divide numbers mentally drawing upon known facts.
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 .
- Divide numbers by up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.
- Solve problems involving addition, subtraction, multiplication and division and a combination of these, including

Reasoning about numbers using facts they already know

Pupils reason about maths using facts they already know, such as recognising links between multiples eg
"I know 48 is a multiple of 8 so it must also be a multiple of 4 and of 2 "
These links are often not immediately apparent to pupils and need to be specifically taught, using questioning such as 'What do you notice?' or 'What is the same? What is different? What has changed?"

Knowing and Understanding Times Tables

Having a good understanding of times tables is extremely useful in teaching for mastery. Problems are easier to solve if pupils don't have to interrupt their thinking to work out multiplication calculations.

A good knowledge of times tables also helps with spotting patterns,
for example $164 \div 4$ can quickly be calculated mentally if pupils know 16 is a multiple of 4 so therefore 160 is also a multiple of 4 . Using this knowledge there is no need for a written calculation as: "4 goes into 16 four times so 4 goes into 16040 times. 4 goes into 4 once. $40+$ $1=41$."

Without a good knowledge of times tables, this pattern wouldn'† be recognised as quickly and would need to be calculated by a written method. Teaching for mastery aims to improve accuracy and efficiency and pausing to use a written calculation ca sometimes detract from the initial problem.

Knowing and understanding times tables is not necessarily the same as memorisation of times tables. Rote memorisation of tables without understanding may not allow pupils to make connections. Pupils need to be able to notice connections such as the connections between $2 x, 4 x$ and $8 x$ tables, connections between multiples of 50 and 100 and about the commutivity of tables, so for example $4 \times 8=$ 32 so $8 \times 4=32$.

We can also know the opposite (inverse), for example 7-2=5 and 7-5=2, so $70-20=50$ and $70-50=20$. However, these connections often do not come naturally to pupils and need to be shown to them in many ways.

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

The above number bonds should all be known fluently by the end of Year 2 so pupils in Year 5 should now be using these known facts to generalise about numbers and to work out related facts.

Having a good knowledge of number bonds also helps with mental calculations when crossing the tens boundary, for example, adding

$$
347+8
$$

Having a fast recollection of number bonds allows pupils to partition the 8 and to quickly work out the calculation using

$$
347+3+5
$$

"I know I need three more to make 350 then there are 5 left out of the 8 so 350 plus 5 equals 355 "

Equally, it allows for fast calculations when adding tens or hundreds to a three digit number as pupils can apply their knowledge of single digit number bonds to add tens or hundreds mentally.

Spotting connections and patterns

Pupils need to be taught to spot connections and patterns to improve their fluency. If they understand how numbers connect they often will not need to do a calculation to solve a problem, for example:

True or False: 389-70 is equal to 382
It would be expected that instead of performing the calculation,

Number - fractions

Pupils should be taught to:

- Compare and order fractions whose denominators are all multiples of the same number.
- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths.
- Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements greater than 1
- as a mixed number [for example, $2 / 5+4 / 5=6 / 5=11 / 5$].
- Add and subtract fractions with the same denominator and denominators that are multiples of the same number.
- Read and write decimal numbers as fractions [for example, 0.71 = 71/100].
- Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100 , and as a decimal.

Geometry and Measurement

- Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles.
- Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram
- and kilogram; litre and millilitre).
- Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres.
- Solve problems involving converting between units of time.

Statistics

- interpret and present data using bar charts, pictograms and tables
- Solve comparison, sum and difference problems using information presented in a line graph.
- Complete, read and interpret information in tables, including timetables

How do we teach for Mastery in Year 4?

Fluency
In Year 5, we aim to teach so that pupils have a deep understanding of number.

Representing Numbers

We want to develop pupils's number sense so that they understand the number rather than just recognising the numeral. Pupils need to understand that numbers can be represented in many ways, not just as a written numeral. We use many different objects and pictures to show that numbers can be represented in lots of ways.

Some ways to represent 3 digit numbers

196		
100	90	6

Pupils sometimes need lots of practise to recognise numbers in different forms. Seeing numbers in different contexts helps them to make connections and to generalise about concepts.

Number Bonds

Learning number bonds is of high importance in understanding maths. Number bonds are pairs of numbers that go together to make another number. Once number bonds are learned they form the basis of many other calculations, for example if we know $5+2=7$, we also know $50+20=70,500+200=700$ and we know $15+2-17,25+2=27$ etc

